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Abstract

The search for predictive models that generalize to the

long tail of sensor inputs is the central difficulty when devel-

oping data-driven models for autonomous vehicles. In this

paper, we use lane detection to study modeling and train-

ing techniques that yield better performance on real world

test drives. On the modeling side, we introduce a novel fully

convolutional model of lane detection that learns to decode

lane structures instead of delegating structure inference to

post-processing. In contrast to previous works, our convo-

lutional decoder is able to represent an arbitrary number

of lanes per image, preserves the polyline representation

of lanes without reducing lanes to polynomials, and draws

lanes iteratively without requiring the computational and

temporal complexity of recurrent neural networks. Because

our model includes an estimate of the joint distribution of

neighboring pixels belonging to the same lane, our formu-

lation includes a natural and computationally cheap defini-

tion of uncertainty. On the training side, we demonstrate

a simple yet effective approach to adapt the model to new

environments using unsupervised style transfer. By train-

ing FastDraw to make predictions of lane structure that are

invariant to low-level stylistic differences between images,

we achieve strong performance at test time in weather and

lighting conditions that deviate substantially from those of

the annotated datasets that are publicly available. We quan-

titatively evaluate our approach on the CVPR 2017 Tusim-

ple lane marking challenge, difficult CULane datasets [8],

and a small labeled dataset of our own and achieve com-

petitive accuracy while running at 90 FPS.

1. Introduction

Previous models of lane detection generally follow the

following three-step template. First, the likelihood that each

pixel is part of a lane is estimated. Second, pixels that clear

a certain threshold probability pmin of being part of a lane

are collected. Lastly, these pixels are clustered, for instance

Figure 1. Best viewed in color. We train a novel convolutional lane

detection network on a public dataset of labeled sunny California

highways. Deploying the model in conditions far from the training

set distribution (left) leads to poor performance (middle). Leverag-

ing unsupervised style transfer to train FastDraw to be invariant to

low-level texture differences leads to robust lane detection (right).

with RANSAC, into individual lanes.

Because the second and third steps in which road struc-

ture is inferred from a point cloud of candidate pixels are

in general not differentiable, the performance of models of

lane detection that follow this template is limited by the per-

formance of the initial segmentation. We propose a new

approach to lane detection in which the network performs

the bulk of the decoding, thereby eliminating the need for

hyper-parameters in post-processing. Our model “draws”

lanes in the sense that the network is trained to predict the

local lane shape at each pixel. At test time, we decode the

global lane by following the local contours as predicted by

the CNN.

A variety of applications benefit from robust lane detec-

tion algorithms that can perform in the wild. If the detector

is iterative, the detector can be used as an interactive annota-

tion tool which can be used to decrease the cost of building

high definition maps [6, 1]. For level 5 systems that depend

on high definition maps, online lane detection is a useful lo-
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Figure 2. The top row shows three images xi from the Tusimple

dataset and their annotations. The bottom four rows display sam-

ples from G(xi) with the adjusted Tusimple annotations overlaid.

We use these additional training samples to bias the network to-

wards shape instead of texture [4].

calization signal. Level 2 systems that are not equipped to

handle the computational load required of high definition

maps depend on models of lane detection equipped with

principled methods of determining when to notify the driver

that the lane detection is uncertain. In pursuit of solutions

for these applications, we identify three characteristics that

a lane detection module should possess.

First, the lane detection algorithm must be able to rep-

resent any number of lanes of any length. Whereas vari-

ability in the number of instances of an object in an image

is an aspect of any kind detection problem, variability in

the dimensionality of a single instance is a more unique to

the lane detection problem; unlike bounding boxes which

have a precise encoding of fixed dimensionality, lane seg-

ments can be arbitrary length. Solutions that reduce lanes

to a constant dimensionality - such as by fitting them with

polynomials - lose accuracy on tight curves where accurate

lane detection or localization is important for safe driving.

Second, the detection algorithm must run in real-time.

Therefore, although there is variability in the number and

size of lanes in an image, whatever recursion used to iden-

tify and draw these lanes must be fast. Solutions to the vari-

able dimensionality problem that involve recurrent cells [5]

or attention [9] are therefore a last resort.

Finally, the detection algorithm must be able to adapt

quickly to new scenes. Sensors such as cameras and lidar

that are used in self-driving carry with them a long tail in

the distribution of their outputs. A lane detection algorithm

should be able to adapt to new domains in a scalable way.

We present an approach which addresses these problems

and is competitive with other contemporary lane detection

algorithms. Our contributions are

• A lane detection model that integrates the decoding

step directly into the network. Our network is autore-

gressive and therefore comes equipped with a natural

definition of uncertainty. Because decoding is largely

carried out by the convolutional backbone, we are able

to optimize the network to run at 90 frames per second

on a GTX 1080. The convolutional nature of FastDraw

makes it ideal for multi-task learning [7] or as an aux-

iliary loss [2].

• A simple but effective approach to adapt our model

to handle images that are far from the distribution of

images for which we have public annotations. Qual-

ititative results are shown in Figure 1 and Figure ??.

While style transfer has been used extensively to adapt

the output distribution of simulators to better match re-

ality [3], we use style transfer to adapt the distribution

of images from publicly available annotated datasets

to better match corner case weather and environmental

conditions.
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